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ABSTRACT

Parallel programming is described as the conversion of an abstract,
machine independent alSorithm to a form, called a program, suitable
for execution on a particular computer. The conversion activity is
simplified where the form of the abstraction is close to the form re-
quired of the programming system. Fine mechanisms are identified as
commonly occurring in algorithms specification. The Poker Parallel
Programming Environment is known to support these five mechanisms
conveniently; thus the conversion is easy and the parallel programming
is simple. The Poker environment is described and examples are
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Parallel Programming and the Poker

Programming Environment

Lawrence Syder
Department of Computer Science

University of Washington

Introduction

The number of parallel computers that exist only as paper designs greatly ex-
ceeds the number that have been built. The number of parallel computers that have
been built greatly exceeds the number that have become stable enough to go into
productive use. A machine in productive use implies the existance of a programmer
population, but because parallel computers* are often unique or one of only a few

copies, the population tends to be small. (In fact it was possible1 to track down vir-
tually everyone who ever programmed the Illiac IV) Obviously, it is a rare in-
dividual who has written and run a parallel program.

Many of us may one day join this small, select group of programmers, however,
as parallel computers become more widely available in response to recently recog-
nized critical needs.2 '3 It is, therefore, natural to wonder what parallel programming
is like and how it differs from the familiar sequential programming. Our answers
will be reassuring in that although we show parallel programming to be quite dif-
ferent, it is nevertheless straightforward and understandable. Our approach is to
begin at the beginning and establish what the programmer must accomplish in paral-
lel programming. Then, after establishing the given conditions, we analyze how it
might be done in a particular parallel programming environment.

A parallel programming environment is the collection of all language and

operating system facilities needed to support parallel programming. We give an
overview of the Poker Parallel Programming Environment which has been developed
to support the CHiP Computer 4 (No knowledge of the CHiP Computer is

presumed.) The Poker environment runs on a "frontend" sequential computer (VAX
11/780) and serves as a comprehensive system for writing and running parallel
programs. It is sufficiently general that, with minor modification, it could be a
parallel programming environment for any of a half dozen recently proposed en-
semble parallel computers. 15
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The Parallel Programng Activity

Before building a parallel programming environment, that is, a system with a
complete set of language and support facilities for parallel programming, one must
scrutinize the programming activity, searching for those things that can be included
to help make it easy, and searching for those things that must be excluded to avoid
making it hard. This scrutiny, as will soon become apparent, leads one to examine
bow parallel algorithms are specified in the technical literature. But first, what do
programmers do exactly?

Programming, either sequential or parallel, is the conversion of an abstract
(machine independent) algorithm into a form, called a progren, that can be run on a
particular computer. The algorithm is an abstraction describing a process that could
be implemented on many machines. The program is an implementation of the algo-
rithm for a particular machine. Programming is the conversion activity. Since it is a
conversion activity, programming will be easy or difficult depending on whether the
algorithmic form is similar or dissimilar to the desired program form. But what are
the sources of dissimilarity between algorithm and program?

First, algorithms are abstractions whose generality is intended to transcend the
specifics of any implementation. Thus, when an algorithm is specified in the tech-

nical literature, there are many details purposely omitted, or at best merely implied,I
because they have little or no bearing on the operation of the algorithm. These must
be made explicit in the course of programming, since they must be defined by the
time the program is executed. There seems not to be much point (or much

possibility) trying to develop a software support system to reduce this source of dis-
similarity. It is inherent.

The second source of dissimilarity is a mismatch of mechanisms between those
used in the algorithm specification and those provided by the programming system.
For a sequential programming example of this phenomenon, consider the mechanism
of recursion and imagine programming a recursive algorithm in a nonrecursive pro-
gramming language. The programming is difficult because one must, in effect,
implement a support package for recursion within the existing mechanisms of the
language. A programming environment will reduce dissimilarity due to mechanism
mismatch when the form required of its programs is similar to the form the al-
gorithms already have, ie. when there is a minimum amount of conversion to be
done. Thus, this source of dissimilarity is not inherent; it can be removed.
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The ideal programming environment, then, cannot make parallel programming
effortless, since there will always be some dissimilarity due to the inherent properties
of abstraction. It could greatly simplify the programming task, however, by support-
ing a specificational form close to that used to give algorithms in the technical litera-
ture. Although this might appear to be an unattainable goal, since algorithms are
given in the literature in a form unencumbered by any preordained syntax or seman-
tics, and are intended for thinking readers rather than computers, it happens that
common characteristics of parallel algorithm specification. can be identified. From
these properties, parallel programming mechanisms can be developed.

In order to illustrate the common characteristics of a parallel algorithm
specification, we begin by giving two parallel algorithms.

" Example 1. Kung and Leisersons describe their systolic band-matrix mul-
tiplication algorithm with the picture shown in Figure 1 together with the
explanation that each processor repeatedly executes a three step cycle,
two of which are idle steps and the third is an 'inner product' step
defined by the text

read A, B, C
C <--C +AB
write A,B, C

such that all processors of every third (horizontal) row execute their inner
product step simultaneously while the others are idle. The A band-matrix
enters through the upper left edge, the B band-matrix enters through the
upper right edge, and the result is emitted along the top edge.

* Example HI. Schwartz 6 presents an algorithm in which the maximum of n
log n values is found in time proportional to log n using n processes con-
nected together in a complete binary tree, provided that initially each
process has log x of the values; all processes begin by finding the (local)
maximum of their values; then leaf processes pass their local maxima to
their parents and halt while each interior process, after waiting for the ar-
rival of maxima from its two descendants, compares these two values with
its local maximum and passes the largest of the three to its parent; the
(global) maximum is ejected by the root.

These examples are not intended to have any particular form from which specifica-
tional mechanisms might be inferred; in fact their description has been compressed
and restated from the original. They are intended only as informal statements of the
essential aspects of two *typical" algorithms to be used to illustrate our points.
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Figure 1. Kung-Leiserson band-matrix multiplication algorithm.

We now identify five characteristics commonly exhibited by the descriptions of
parallel algorithms for the nonshared memory model of parallel computation:

* a graph, G = (V,E), whose vertex set, V, represents processors, and whose
edge set, E, represents the communication structure of the algorithm,

* a process set, P, describing the types of computational activity to be found
in the algorithm,

* an assignment function, v: V -- ' P giving to each processor a process,

* a synchronization statement describing the interaction of the separate com-
putational elements,

" an input/output statement describing the assumed form of the data, and the
format of the results

There is nothing surprising about the entries on this list. They arise all the time in
parallel algorithm descriptions, which is exactly the point. Let us see how they were
used in the Examples.

In the case of the band-matrix multiplication algorithm, the graph G is given in
Figure 1." For the maximum-finding algorithm, the graph is a complete binary tree.

'Strictly speaking, this is not a graph, but we intend that the edges around the perimeter be con-
nected to input/output "vertices.'



It is significant that the information describing the communication structure of the
algorithm was, or could have been, given by a picture. Notice that in both cases the
graph is really a representative for a graph family. Problems of different input size
will require graphs of different size; for example, the structure in Figure 1 is ap-
propriate for matrices with bands that are four values wide, and matrices with bands
of width five would require 25 processors. The way in which the graph family is
defined, the way in which a particular input size determines a particular graph
family member, and the way to handle the cases where the graph has more vertices
than the available number of processors, are examples of 'commonly omitted
details," cited above as the first source of dissimilarity. They are omitted because
they are obvious, or their effect is inconsequential, or they are irrelevant. The
graph, by contrast, is fundamental, as is the fact that its size is determined by the

problem's input size.

The process set P for the systolic algorithm contains three elements: one with
the inner product step first followed by the two idle steps, one with the inner
product between the idles, and one with it following the idles. The maximum find-
ing algorithm has two elements in its process set: an interior node process that
receives descendant inputs, and a leaf process that does not. Notice that the size of
the process set is fixed, independent of the size of the graph.

The assignment function wr is given in the case of the systolic array by describing
which horizontal rows are performing the inner product step and which are idling.
The fact that processing is performed on every third row together with the fact that
the outputs of an inner product step are obviously transmitted to processes that will
read the values on the next step is sufficient information to assign the processes to
processors. For the binary tree algorithm the assignment is implicit in the use of the
phrases 'leaf process"and *interior process," ie. we know which nodes are leaf nodes
and they obviously get leaf processes.

The synchronization specification may not be very recognizable in either algo-
rithm, but it is there. The processes of the systolic algorithm operate in lock step,
since the time of an idle step equals the time of an inner product step. This means

that the question of when processes read and write is determined in this case simplyI by the explicit use of the idle. In the tree algorithm the phrase "after waiting for the
arrival" says that the process operation is "data-driven," ie. the process executes untilI it needs data and then it idles until the data has been read.



The input/output statement is curious in that it must be known to program the
process set, it can influence the synchronization, and it is critical to demonstrating
the correctness of the algorithm, but it seems only to enter the process explicitly
after the program is written and is ready to be run. Since its indirect influence per-
meates the programming activity and is hard to extract, we will mention input/output
little after these following two points. First, the input/output for the band-matrix
product algorithm was given pictorially in the original description, 5 offering another
example of the role of pictures. Second, the data in both examples can be viewed as
streams, i.e. it is unstructured.

Although there might be other characteristics commonly exhibited by parallel al-
gorithm specifications, this set of five properties is sufficiently comprchensive to
serve as our *standard algorithmic form." It summarizes the things that computer
scientists describe about an algorithm when they explain it to each other. Making
the program form of our parallel programming environment close to this standard al-
gorithmic form will contribute to reducing dissimilarity due to mechanism mismatch.
We next consider the extent to which this has been achieved in the Poker environ-
ment.

The Mechan isms of Poker

The statement that the communication structure of a parallel algorithm can be,
and frequently is, given as a graph is simply a comment on the nature of computa-
tion in the nonshared memory model of parallelism. It does not, by itself, indicate a
convenient mechanism for expressing such a graph. The graph could be given by a
pointer structure or by an adjacency matrix, 7 it could be defined implicitly by a
routine that computes packet addresses, or in any of a dozen other ways. The choice
will affect the degree of mechanism mismatch between program and algorithm, of
course, and again one should be guided by what is actually used in the literature.
The mechanisms selected for the Poker system represent one way to balance the con-
venience of "user friendly' mechanisms and the pragmatics of efficient implemen-
tation.

The first property for which a mechanism must be selected is the graph used to
define the communication structure of the algorithm. The most convenient way to
express a graph is evidently with a picture, judging from how frequently they are
used to describe graphs. Thus, the Poker Environment provides an interactive
graphics system as the mechanism for defining the graph. The graph is not drawn
free-form, but rather it is laid out on a stylized two-dimensional medium called a



lattice (see Figure 2). In the lattice, squares represent potential vertex positions that
can be connected by line segments to define edges. The circles provide sites where
line segments can bend and crossover one another. The line segments are drawn by
moving a cursor from circle to circle along the path of the intended edge. Such a
drawing is called an embedding of the graph into the lattice.

000000000 000000000
0oEDl0Uf 0 o 0oMo 000000000
000000000 Qo~oCI omoc
0oMf0oU]flof] 0oMo 000000000
000000000 000000000
0oE 0EDo ao0 ]o 000000000
000000000 0OEffO 0OWOO

ofEDl0Uff0lI 0oMo 000000000
000000000 000000000

(a) (b)

Figure 2. Lattices for graph embedding.

Figure 3 shows how to program the communication structures for the graphs of
the example algorithms. The hexagonal mesh is, except for a 450 rotation, a direct
implementation of Figure 1. The binary tree must be deformed to fit in the par-
ticular lattice medium, but the embedding is still a mechanical process in general.

Notice that the embedding activity is graphical programming rather than sym-
bolic programming. Since graphs tend to be given graphically rather than symboli-
cally, this probably represents a reduction is dissimilarity over the symbolic alter-
natives.
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Figure 3. Embedding of the graphs describing the
communication structures for algorithms of Examples I and II.

The next step is to specify the sequential code segments of the processes, i.e., to
define the elements of the process set P. This is conventional symbolic programming
and could be done in any sequential language, e.g. C, Pascal, etc. The Poker En-
vironment uses a primitive language, called XX, for this purpose, and the mechanism
is to define a set of independent procedures. Figure 4 shows two sample process
codes.
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code inner; code inode (logofn);
ports Ain, Aout, Bin, Cin, Cout; ports Ichild, rchild, parent;
begin begin

real A, B, C; Integer logofn, i;
while true do real big, temp, vals[logofn];
begin big:= vals[l];
A <- Ain; B <- Bin; C -- Cin; for i := 2 to logofn do
C := C + A * B; if big < vals[i] then big := vals[ij;
Aout <- A; Bout <- B; Cout <- C; temp <- Ichild;
end if big < temp then big := temp;

end temp <- rchild;
if big < temp then big temp;
parent <- big

end

(a) (b)

Figure 4. The XX code for processes from Examples I and II.

When compared with the logical process presented in Example I, the code

shown in Figure 4a is seen to differ in two ways. First, there are the syntactic fea-

tures, key words, declarations, etc., characteristic of standard programming lan-

guages; second, there is explicit mention of "ports! Ports provide a means for a
process to refer to the processes with which it communicates: To read from another

process, it assigns from a port name (e.g., A *-Ain) and to write to another process
it assigns to a port name (e.g., Aout <--A). Which processes these will be and how

they are specified cannot be addressed until port names are defined, below.

The mechanisms for specifying the assignment of a process to each vertex,

,u: V --> P, is to display the graph embedding and request that the user assign

process names (the name following code in the procedure definition) to each vertex.

Figure 5 shows the assignment for the example programs. Notice that the actual

parameter for the tree program is given on the line following the name.
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\ \

(a) (b)

Figure 5. Process assignment for the examples.

For the band-matrix product systolic array, one might expect three different
process types in the set P, one corresponding to each of the three positions of the in-
ner product step in a pair of idles, as described in Example I. But the XX code of
Figure 4 does not have any idle instructions. This is because the XX programming
language uses a data-driven semantics to define the synchronization of processes: the
reads wait for the arrival of the data. The three process types mentioned in Example
I reduce to one type when data-driven semantics are used. How is synchronous com-
munication achieved in Poker? Automatically. After the whole program specifica-
tion is complete, a code optimization facility, called coordination, analyzes the
program and converts it to a synchronously communicating program, if possible. In
this respect programming an algorithm with Poker is somewhat easier than defining
the algorithm in the first place.

It must be emphasized that not all Poker programs can be efficiently coor-
dinated. XX has an idle instruction for those cases when synchronous execution is
desired, but automatic coordination is not possible. The user could always decide to
do his own coordination, but this is probably not advisable since coordination, like
code optimization, is better done by machine. For example, automatic coordination
can produce a better algorithm than the one with the explicit idles described in Ex-
ample I.!



With four of the mechanisms defined, the programming is nearly complete. All
that remains is to interface the graphical communication structure with the symbolic
code segments. This is accomplished by a mechanism that assigns port names to the
edges of the graph that meet at a vertex so that the process assigned to that vertex
can refer to its logical neighbors. The port name assignment is a feature of Poker
programming with no direct analog in the conceptual discussion of parallel program-
ming given above. It can be viewed as an explicit means of establishing a vocabulary
with which to describe communication. Terms like 'parent" and "left neighbor have
no intrinsic meaning; they must be specified to the computer. Thus, port naming is a
type of declaration.

At this point the Poker program is finished. It can now be compiled, coor-
dinated, assembled and linked. To run the program we must give the input/output.
This is done with a mechanism that labels the edges connecting to the perimeter of
the lattice with the names of the streams that flow in or out of them. In this way
the edge edges are ports to the lattice. The data, of course, moves to and from the

lattice in a data-driven manner.

IQ Awit In £Aut In AoaS In Aut

CIA CrA Co Co r

Owlt o-- wi u N u k' t r "- chlpre

(a) (b)
dFiure 6. Port names declaration for the examples; NOte that

names are clipped to the first five characters.

The mechanisms supplied by Poker to program an algorithm are: drawing a pic-
ture of a graph representing the communication structure, defining a set of sequen-
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tial procedures, labeling a picture of the graph with process names in one case and
port names in the other, and data-driven semantics with coordination for
synchronization; to run the program the I/O is specified as named streams of data.

There is one other mechanism provided by Poker that has not been mentioned, the

phase construction.

Informally, a 'phase' is an algorithm (in the sense we've been using) with a

single communication graph. Each of our example algorithms is a phase, since each
is based on a single communication graph. Algorithms found in the technical litera-

ture frequently qualify as phases. (See the Thompson and Kung sorting algorithm

for an example of a multiphase, ie. multiple interconnection structure,
algorithm.) 'Real World" problems - the complicated, ill-defined, exception prone

programming situations that application programmers will be solving when they use
the programming environment - tend not to be so tidy. Solutions to real world

problems will presumably be developed by dividing them into parts which can either
be solved directly by a phase, or further subdivided until its constituents can be

solved by phases. The consequence of this strategy is that phases must be composed,
i.e. put together to form more complicated algorithms. For example, the conjugate

gradient method of solving partial differential equations can be done with four

phases, an input phase, a wgridN phase for matrix multiplication, a 'tree' phase (or

summation and broadcast, and an output phase14 . The "grid" and "tree' phases are
executed iteratively in an alternating schedule. Poker has been designed to support

phases and their composition.

Description of the Poker Environment

After considerable discussion of various concepts and abstractions, it is time to

get down to the details of the Poker system. Perhaps the first question to be asked
following the discussion of the Poker mechanisms is, what does a whole Poker

program look like? Answer: It cannot be seen In tote. Unlike 'regular" programs,
Poker programs are not monolithic pieces of program text. Instead, a Poker program

is a database. To see the communication structure, one displays a piCture of the
graph which is stored in the database. To see the assignment function, one displays

a picture of the graph labeled with process names. 00To make changes to the program

'This picture is not actually stored directly in the database - it is constructed by the Poker system
from the database relations. How this is done is interesting, but beyond the scope of this paper; see
Ref. 10.
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one simply changes the picture or the labeling which causes the database to be
changed. But we are ahead of ourselves; let's go back and start at the beginning of a
Poker session.

The Poker environment uses two displays, primary and secondary, one of which
must be a highi resolution (1024 x 768 pixel) bit-mapped display. Two displays are
used simply to increase the amount of information available to the programmer at
any one time. Most activity takes place on the primary display; XX programming is
usually done on the secondary display.

[ a M r al WINU mW: switch so=61l El i... ~iMJg I LAST PCt 4 4 MWE :

EJi0E

Figure 7. The form of a typical primary
display, showing a 16 processor switch setting display.
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Figure 8. A 16 processor port names display.

The primary display has the form illustrated in Figure 7. The bottom square
region, called the fied, is where most of the programming activity takes place. The
field always displays some schematic representation of th. lattice being programmed.
The exact form of the representation changes (compare Figure 7 with Figure 8)
depending on whether the programmer is performing a graph embedding, a proc-ess
assignment, a port declaration, etc. Status information, diagnostics and miscel-

(The upper left region gives a map of the lattice marked with that portion being dis-
played in the field; this i useful only for problems larger than showt in Figure 7.)

field~~~~~~~~~~~~ ~ ~~~~~~ alasdsly-oeshmtcrpeetaino-h atc en rgamd
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The bottom line of the chalkboard is the command lixe, used for specifying the few
textual commands required by Poker,*"* such as reading library files.

The logical structure of the Poker Environment is shown in Figure 9. It
provides an integrated set of facilities to

0 define architecture characteristics (CHiP Parameters),

0 embed communication graphs (Switch Settings),

* program process set codes, (XX Language),

* declare port names (Port Naming),

* assign processes to processors (Code Naming),

* compile, coordinate, assemble, load and define input/output (Command
Request),

* execute, trace, peek and poke (Trace Values).

Although the facilities have been listed in the order in which they might be used
when writing a program, notice from Figure 9 that no order is actually enforced;
programmers can, and typically do, jump back and forth between the different
facilities.

--Pker is extremely interactive; in actions are given as a sihle key soke and have immediate
effect.

,I
.9d



Process Ssitne: I

Port Declarations: ________

PrxecuT stin : Assemler

Trace Values Emulator

Fipre 9. The lostc1 struere of the Pbkwr ezvihomat.
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Next we briefly describe the kinds of information displayed with each facility,
and the service provided. The reader should be cautioned that much is being left
out in the interest of brevity, though full details are available,11 and that the
dynamic, interactive character of the system is completely lost in this hard copy
presentation.

Architectural definition. Because Poker is intended to support CHiP program-
ming, it has been designed to accommodate a number of CHiP family architectures.
Programs can be written for logical CMiP machines with from 4 to 4096 processors.
All of these logical machines can be emulated using a software emulator. (The emu-
lated instruction set is that of the Pringle parallel computer, 12 a hardware emulator
of the 64 processor members of the CHiP family.) Consequently, the programmer
begins using Poker by specifying the characteristics of the underlying logical ar-
chitecture. These include the number of processing elements and the amount of
routing capability needed for the lattice (corridor width4). The default parameters
are those that matcl, the machine defined in the previous session, or, if there was
none, then the parameters of the Pringle hardware.

Embedding communication graphs. The field of the primary display shows the lat-
tice of the current architecture, as illustrated in Figure 2. The programmer defines
the communication structure of the algorithm by drawing the graph in the lattice
that defines the structure. This chiefly involves connecting processors (represented
as boxes) with line segments to define edges. Graphics primitives, based on cursor
keys, permit edges to be drawn and erased. Facilities are available for managing the
display, saving embeddings, reading in library embeddings, etc.

Programming the process set codes. The XX sequential programming language is
a simple scalar language for defining processes. The language has four data types
(Boolean, character, integer and real), the common control structures (while, for,

lf4b=i.eila, etc.), vectors and the usual supply of scalar arithmetic and logical
operators. In addition to data type declarations, one can also declare scalar variables
to be port names, procedure parameters, or variables to be traced. Input/output is
performed by assigning from or to a port name. The semantics are "data-driven*:
writes occur immediately and reads wait on the arrival of data, if necessary. XX
process codes are generally developed on the secondary display using a standard
editor.
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Process assignmeni. The processors are assigned processes using a field display
on the primary terminal like the two shown in Figure 5. The programmer enters the
name of the process procedure on the first line of the box symbolizing the processor.
If the process has formal parameters, then values for the actual parameters can be
entered on the following (four) lines. For example, the formal parameter logof in
Figure 4b is assigned the value 4 in Figure 5b. Facilities are provided to avoid
tedious typing. One can buffer the contents of a box and then automatically deposit
the contents of the buffer into processors in whole regions of the processor array.
For example, if the programmer buffers a box, then typing <4 <4 followed by the in-
sert key causes the processors whose indices are both less than 4 to receive the con-
tents of the box. (The same mechanism, but for port declarations, is shown in
Figure 8.) Standard screen management facilities, library access facilities, etc. are
available.

Port declarations. The field of the primary display has the form like the two ex-
amples shown in Figure 6. Each processor has up to eight incident edges as a result
of the graph embedding, and it has been assigned a process which refers to up to
eight port names. These are matched using the port declaration. The processor box
is divided into eight windows:

home

north port northeast port

northwest r east port

west port southeast port

southwest port south port

The programmer enters the names used by the assigned process code into the win-
dow for that edge. The names are clipped to the first five characters. Facilities are
provided for displaying unclipped names in the chalkboard. Like the process assign-
meat, it is possible to buffer port assignments and deposit them automatically in
whole regions of the processor array (Figure 8). Screen management and other ancil-
lary commands are available.

Proaram translatim. The preceding facilities provide a means of specifying a
Poker database containing the elements of a parallel program. They are then con-
verted into executable form. The XX compiler converts each process into assembly
code. The coordinator 13 then attempts to convert the process aigned to each

, ... .,,. lill . --- g~ ... I[
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processor into a form that permits the entire program to run with synchronous (ie.,
not data-driven) execution. (This step can be by-passed and the processes can be run
in data-driven form.) If coordination is successful, the processors may all have dif-
ferent assembly codes associated with them. In any event object code is produced.
The connector 'compileS the graphical representation of the communication graph
into a symbolic object form. The object code and the object graph as well as the ac-
tual parameter values are loaded into the emulator (or the Pringle). Finally, the
input/output files are specified.

Execution. The resulting program is executed. The traced variables are dis-
played in a field similiar to that used for process assignment. The execution can
proceed for a given number of steps, or until a displayed value changes. When the
execution is suspended, any of the displayed values can be changed. When execution
resumes these new values are poked (whence the name Poker) back into the proces-
sor memories.

The Poker system has been implemented as a (-40,000 line) C program to run
on a VAX 11/780 under the UNIX (a trademark of Bell Laboratories) operating sys-
tem.

Program Performmce
How do programs written in the Poker environment perform on the CHiP Com-

puter? Since there is no CHiP Computer implementation and since there is scant ex-
perience with the Pringle, it is not possible to support our claims with copious
evidence. But claims can be made nevertheless.

Generally speaking, Poker introduces little inefficiency. Its graphical program-
min& facilities - switch settings, port names and code names - engender no in-
efficiency. The latter two are only definitional. The witch settings are directly
translated into source-target pairs for the Pringle and will be eitrlly translated for
the CHIP Computer. The XX language is so simple that very efficient compilation
of PE code is possible. (The laguape could be richer and still be efficient; replace-
meat with another sequential languagp, e4. Pascal, is a simple change.) There is
only one XX feature with noticeable execution time inefficiency, the data-driven
input/output, ad even this is only occasionally a liability.



Data-driven 1/O is both a luxury and a necessity. It is a luxury in that certain
programs, capable of being run synchronously, need not be written using the tedious
process of inserting explicit idles: They can be written with data-driven communica-
tion and then be run through the coordination phase 1 to be converted into
synchronous form. Some programs, however, cannot be coordinated. Others cannot
be run synchronously without introducing superfluous I/O, or 'chattering', in which
the processors communicate back and forth at regular intervals whether or not there
is actually any data to be sent.13 These programs ought to be written using data-
driven communication because it is easier and substantially more efficient than the
'chattering'. In such cases data-driven 1/0 is a necessity. To the extent that a
program could be run with synchronous I/O but is not, either because it is not coor-
dinated at all or the coordinator fails to find a synchronous variant, there is a small
loss in performance. As an example of the case where coordination is not used, we
know that the Kung-Leiserson band-matrix product algorithms takes 1.16 times
longer using uncoordinated data-driven rather than coordinated data-driven
communication. 8 Since data-driven 1/O is necessary for the nonsynchronously ex-
ecutable programs anyway, the inefficiency arises only when the coordinator phase
fails to find a synchronous variant and one exists. This is analagous to criticizing se-
quential languages because their optimizers occasionally fail to find an optimization.

Thus, the Poker environment is a very efficient programming system for the
CHiP Computer. But how well does it support other ensemble machines? L5

Since the PEs of the CHiP Computer and the Pringle are similar to other en-
semble machines and an XX compiler for them would be similarly efficient, the in-
efficiencies will arise in expressing the communication structure. Postulate an en-
semble machine with a fixed interconnection structure S and consider using Poker to
program such a machine. There are two possibilities. First, one can configure the
lattice once and for all time to be the interconnection structure S. Then if the algo-
rithm uses a different communication structure than S, it is up to the programmer to
encode the appropriate routing actions in the PE processes. In this case the burden
of mapping the communication structure onto the architecture is entirely on the
programmer. Poker would be of little help. Second the programmer could use
Poker switch settings to express the algorithm's communication structure just as if
the target machine was the CHiP Computer. Then if that structure did not match S,
either an automatic or a manual scheme for embedding the graph into S could be
used. This might take the form of packet address encoding if that would be ap-
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propriate for the architecture. The advantage would be that the interconnection
graph mechanism would still be a convenience for the programmer. The disadvan-
tage is that there could be inefficiencies in the run time implementation of the
processor-to-processor communication, but this would be due to the architecture, not
Poker.

Summary

Starting from first principles we have descended from a 'high level* abstract
idea of what is required for parallel programming to the basic details of a particular
parallel programming environment. Although each step got more specific and closer

* to the realities of everyday parallel programming, we kept in sight our original obser-
vation that parallel algorithms often utilize five common properties of their
specification: a graph describing the communication structure, a finite process set
defining the activities, an assignment function giving processes to processors, a
synchronization statement and input/output information. These properties motivated
mechanisms, and the mechanisms were illustrated by the Poker environment.
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